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SUMMARY 

The metabolic profiles of brain biopsies obtained at surgery were recorded 
using capillary gas chromatography (GC). About 160 peaks were seen, of which 105 
were used for data analysis. Three classes of brain tissue were examined: normal 
cerebral cortex, pituitary tumours and “brain” tumours. Pattern recognition analyses 
of the GC profiles using the SIMCA multivariate programme clearly resolved normal 
brain tissue from the tumours. Subclassification of the different tumours was more 
difficult, probably because the number of samples in each tumour class was too small. 
High-resolution two-dimensional electrophoresis separated the brain biopsies into 
several hundred different proteins. The combined use of the latter technique and 
capillary GC-mass spectrometry and pattern recognition analyses gives the possibility 
of the cla&ification of diseased cells based solely on differences in their biochemical 
compositions. 

INTRODUCTION 

Several human diseases result in characteristic changes in the biochemical com- 
position of the cells and the body fluids. Separation techniques such as liquid chroma- 
tography and gas chromatography (GC) may be used to detect such changes, e.g., the 
accumulation of organic acids in blood and urine’. The recording of a metabolic 
profile-is particularly suitable for the diagnosis and study of inborn errors of metabo- 
lism, as these usually result in the accumulation in the body of large and easily 
recognizable amounts of one or a few specific metabolites’. 

Most other human diseases, on the other hand, do not give rise to major 
alterations in the metabolite pattern. Although only minor changes may occur, it is 
likely that the profiles may still carry diagnostic information. The problem is to 
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retrieve this information from the large amount of quantitative and qualitative data 
contained, e.g., in a complex capillary gas chromatogram. One solution to this prob- 
lem involves the use of computer and pattern recognition methods. Such procedures 
have been used to analyse the data from GC profiles of bacteria2, pyrolysis GC 
profiles of moulds3, GC profiles of volatiles4 and lield ionization’ and pyrolysis6 mass 
spectrometry profiles, etc. 

This paper concerns the possibility of using GC and pattern recognition meth- 
ods to study and classify human cancer cells. Different brain tumours were selected 
and their metabolic profiles (105 reccurring GC peaks) were determined followed by 
data analysis by the SIMCA pattern recognition method’*‘. Although both chemical 
and analytical problems were encountered, the results demonstrate the feasibility of 
differentiating between various brain tissues by means of capillary GC and pattern 
recognition. 

EXPERIMENTAL 

Brain samples 
Brain samples (tumour and neighbouring normal tissue) were removed surgi- 

cally_ Parts of the biopsies were submitted to routine neuropathological examination. 
and parts were immediately submerged in liquid nitrogen and subsequently stored at 
- 70°C before GC analyses. Three categories of brain biopsies were included in the 
present investigation: normal cerebral cortex (class 1, 11, = 6): “brain tumour” (class 
2, ?zt = 3) and pituitary tumour (class 3, 1z3 = 7). Class 2 consisted of a meningeoma 
and metastatic tumours from carcinomas. Class 3 can be sub-divided into adenomas 
with production of growth hormone, or prolactin or both hormones. 

Gas ciwomatograpl~_v 
The frozen brain biopsies (about 20-30 mg) were subjected to methanolysis 

(refluxing with anhydrous methanol saturated with hydrogen chloride gas) overnight. 
The solvent was then removed in a stream of nitrogen and the residue was trimethylsi- 
lylated for 30 min at 80°C with bis(trimethylsilyl)trifluoroacetamide (BSTFA). The 
methyltrimethylsilyl derivatives were separated in a 50-m glass capillary GC column 
coated with SE-30. The temperature was maintained at 50°C for 3 min after injection 
and then increased at 4”C/min to 240°C. The gas chromatograph was a Carlo Erba 
Fractovap 2 101 equipped with a standard flame-ionization detector. 

Retention times and the pattern of neighbouring peaks were used to “identify” 
each GC peak, which was given a number. Quantitative information (data vectors) 
was obtained by measuring the peak heights. The baseline was chosen arbitrarily, but 
was the same in all instances_ As only relative differences were sought, the choice of 
baseline did not affect the results. 

SIMCA pattern recognition analysis 
The number of samples was limited (sixteen biopsies), and the running of many 

duplicate analyses of each sample was deliberately avoided in order to test the com- 
puter system using unfavourable conditions. The pattern recognition method should 
therefore be able to utilize the chromatographic information in multivariate data 
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analysis regardless of the ratio between the number of parallels and the number of 
samples. This criterion is fulfilled by the SIMCA method7*8. 

The SIMCA procedure involves the use of eigenvector projection_ Each data 
vector from the chromatogram (quantitative information about the 105 GC peaks 
present in all sixteen samples) is considered as a point in the 105-dimensional space 
obtained by giving each variable one orthogonal coordinate axis. When the point 
swarm of the sixteen-sample data set is projected down on the plane conserving most 
of the variance, the eigenvector projection corresponding to the first two eigenvalues 
of the data covariance matrix is obtained. 

The SIMCA analysis also includes the use of “training sets”, in this instance 
sixteen brain biopsies divided in three “classes” (according to neuropathological 
diagnosis). It is noteworthy that each training set requires only a limited number of 
samples, preferably five or more. Principal components models are calculated for all 
classes, and may range in complexity from one point to an n-dimensional hyperplane. 
The complexity of each class model is estimated from the data using the technique of 
cross-validation’. 

In the next phase of data analysis, each object data vector is related to each of 
the class models obtained by a multilinear regression, and the so-called residual 
standard deviation (RSD) is obtained and used to find distances between different 
class models. In this way it is possible to examine the class to which a metabolic 
profile from a sample (brain biopsy) belongs. 

RESULTS 

The gas chromatograms of human brain biopsies pre-treated as described show 
complex patterns (Fig. 1). No attempts have been made to identify systematically all 
peaks at this stage, but it is clear that many of the major components are fatty acids, 
carbohydrates, amino acids and cholesterol (which is the last eluted compound). It 
should be realized that as the samples were subjected both to methanolysis and 
trimethylsilylation, nearly all metabolites which are stable and volatilizable may 
appear in the chromatograms. The results express some differences in the profiles of 
the various brain samples. Fig. 1, for example, shows the chromatographic patterns 
of normal cerebral cortex (top), pituitary tumour (middle) and of a meningeoma 
(bottom). A manual interpretation of these different metabolic profiles is not easy, 
however_ When the pattern recognition method was used to extract information from 
the patterns, the results shown in Fig. 2 were obtained_ Fig. 2 illustrates the eigenvec- 
tor projection correspondin, u to the first two eigenvalues of the sixteen samples. The 
normal brain tissue samples are clearly separated from the tumours. It is important to 
note that this projection is made without the use of the information about the class 
assignment of the samples. The resulting separation (Fig. 2) is therefore a strong 
indication of real differences in the metabolite pattern of the normal and the tumour 
tissues. 

Attempts were made to separate the tumour subclasses, but this proved to be 
difficult at present (Fig. 3). This may partly be due to strong subgroupings within each 
tumour class. When such subgroupings are not recognized, severe overlapping can 
occur even when the subgroups are well resolved (Fig. 3). In this study the tumour 
samples are too few to allow the detection of subgroups even if one knows that there 
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Fig. 1. Metabolic profile of human brain biopsies. Top, normal cerebral cortex; middle, pituitary tumour; 
bottom, meningeoma. The tissue (20-30 mg) was refluxed with anhydrous methanol-HCI overnight. After 
removal of the solvent, the residue was trimethylsilylated (BSTFA, 80°C. 30 minutes)_ The derivatives were 
separated in a 50-m wall-coated glass capillary column. After 3 min at SOT, the temperature was program- 
med at 4”C/min to 240°C using a Carlo Erba Fractovap 2101 gas chromatograph with a flame-ionization 
detector. 

are indeed several types of brain tissue tumours represented in the data set. Only with 
an increased number of samples can we start to study this problem. 

DISCUSSION 

Microscopic examination of tumour cells stained in various ways often reveals 
morphological characteristics which the experienced pathologist uses for the classifi- 
cation of the diseased cells. It seems obvious that as there are visual differences in 
various normal and malignant cells, there must also be differences in their biochem- 
ical composition_ In this work we recorded the metabolic profiles of various human 
brain biopsies using capillary GC. When the data were analysed by the SIMCA 
pattern recognition program’**, differentiation between normal brain tissue and 
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Fig. 2. Eigenvector projection corresponding to the first two eigenvalues of 16 samples. 0, Normal 
cerebral cortex; 0, brain tumour (class 2); A, pituitary tumours (class 3). 

3. Three-dimensional space with two classes (0, x) which contain sub-groups. Top, models con- 
structed without information about sub-classes; bottom, models constructed with knowledge of the dif- 
ferential diagnosis. 
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tumours was readily obtained. Subclassification of the various tumours, however, 
was more uncertain. 

There may be several reasons for this. First, at this stage of the project we 
deliberately avoided the use of mass spectrometry and the identification of the CC 
peaks was based on retention times only_ The confidence in the qualitative data is 
therefore limited, and misinterpretation of the identity of some CC peaks probably 
occurred. Secondly, there is also a degree of uncertainty in the quantitative aspects, 
e.g., many of the CC peaks are inhomogeneous. In the next stage of our work we plan 
to incorporate mass spectrometry in order to overcome some of these problems. It is 

. __ 

Fig. 4. Protein pattern of a human pituitary tumour. The proteins were separated by high-resolution two- 
dimensional electrophoresis using the ISO-DALT method described by Anderson and Andersonr3. Iso- 
electric focusing was used for the tirst dimension (horizontal) and SDS electrophoresis in gradient poly- 
acrylamide gel was used in the second dimension (vertical). Staining of the protein spots was effected with 
Coomassie Blue. 
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particularly tempting to implement the system described by Sweeley et a/_‘0. which 
provides automatic identification and quantitative analysis of each peak in a comples 
chromatographic profile. 

Thirdly, the number of samples (turnout-s with a specific diagnosis) in each 

training set was small (probably too small). Collection of more biopsies in connection 
with neurosurgery is currently taking place. 

Finally, the pattern recognition programs in general work better with an in- 
creasing number of variables_ The chromatograms of the brain samples contained 
about 160-170 peaks, including the smallest ones and the many “shoulders“. How- 
ever. only the 105 best resolved peaks that occurred with every sample were used in 
the calculations_ In biological practice 100-200 variables are standard”. As the 
SIMCA program was designed to handle over 1500 variables. it would be desirable 
also to include information other than the GC data. The other method of choice for 
separation might be high-resolution two-dimensional electrophoresis’“*‘3. This 
method is currently used in one of our laboratories’5 and an example of the appli- 
cation of this technique to the analysis of a brain biopsy (the same tumour as in Fig. 
3, middle) is shown in Fig. 4. A few milligrams of the tissue were separated into several 
hundred proteins (gene products). By combinin, 0 capillary GC with mass spectrom- 
etry and two-dimensional electrophoresis we are at present able to separate a few 
milligrams of tissue into nearly 1000 constituents. It seems highly probable that when 
these data are subjected to pattern recognition analyses, the possibility will be open 
for an objective differential diagnosis of diseased ceils based solely on differences in 
their biochemical compositions. 
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